View Single Post
curiousuburb
Antimatter Man
 
Join Date: May 2004
Location: that interweb thing
 
2010-11-03, 10:20

Saturn's rings model galaxy formation

Click images for sources.
Quote:

Oscillations at B Ring edge

Saturn’s largest ring appears to behave like a mini spiral galaxy. NASA’s Cassini spacecraft caught enormous waves sloshing back and forth across Saturn’s B ring, similar to waves believed to give galaxies their spiral shapes.


This movie, made from images obtained by NASA's Cassini spacecraft of the outer edge of Saturn's B ring, reveals the combined effects of a tugging moon and oscillations that can naturally occur in disks like Saturn's rings and spiral galaxies.

The B ring is shown at the lower left of the frame, and its outer edge varies with time, moving in and out in this concatenation of 92 images, each taken about 6 minutes apart, over the span of 9 hours, 30 minutes. The Cassini Division, the division between the A and B rings once thought to be empty, dominates the upper right of the frame. The Huygens Ringlet runs across the middle of the frame from the upper left to lower right.

At its innermost radial distance, the B ring's edge is 117,470 kilometers (72,992 miles) from the center of Saturn. At its outermost radial distance, the B ring's edge is 117,670 kilometers (73,117 miles) from the center of Saturn. These variations amount to a difference of 200 kilometers (about 120 miles).

Cassini scientists have determined that the complicated radial variations in the B ring edge are caused by the presence of four scalloped patterns, all independently rotating around the ring. One pattern, with two lobes, is present because of the gravitational perturbations from the moon Mimas, which alter the ring particle orbits because of a repetitive configuration of particle and satellite orbital positions known as a Lindblad resonance; this pattern always stays fixed with respect to Mimas. The other patterns with one, two, and three lobes respectively, travel around the ring with differing speeds and are believed to be natural modes of oscillation of the ring in this vicinity, excited by a process known as "viscous overstability."

In this process, the small, random motions of the ring particles feed energy into a wave that propagates outward across the ring from an inner boundary, reflects off the outer edge of the B ring (which becomes distorted as a result), and then travels inward until it reflects off the inner boundary. This continuous back-and-forth reflection is necessary for these wave patterns to grow and become visible as distortions in the outer edge of the B ring.

In supporting these so-called "self-excited" modes, the outer edge of the B ring is behaving the way astronomers believe spiral galaxies behave. However, such modes are not directly observable in galaxies. Cassini's observations of the outer B ring edge constitute the first time such large-scale modes in a broad disk of material have been observed in nature.

“This is a major result,” said Cassini imaging team leader Carolyn Porco of the Space Science Institute. “Saturn’s rings are tiny tiny tiny compared to a galaxy, but we see the same physics.”


Keeping a close watch on the outer portion of Saturn's B ring, NASA's Cassini spacecraft records the complex inward and outward movement of the edge of the ring. This ring movement resembles the suspected behavior of spiral disk galaxies.

The position of the outer edge of the B ring, shown here crossing the middle of the frame, varies with time in this concatenation of 301 images taken an average of 1 minute, 50 seconds apart, over the span of about nine hours. The total variation of the edge, from the innermost to outermost locations, is 200 kilometers (120 miles). The eccentric Huygens Ringlet, another very narrow ringlet discovered by Cassini, and the innermost of the bands of ring material in the Cassini Division, a low-density region once thought to be empty, all appear in the top of the frame.

Cassini scientists have determined that the complicated radial variations in the B ring edge are caused by the presence of four scalloped patterns, all independently moving around the ring. One pattern, with two lobes, is present because of the gravitational perturbations from the moon Mimas, which alter the ring particle orbits because of a repetitive configuration of particle and satellite orbital positions known as a Lindblad resonance; this pattern always stays fixed with respect to Mimas.

The other patterns with one, two, and three lobes respectively, travel around the ring with differing speeds and are believed to be natural modes of oscillation of the ring in this vicinity, excited by a process known as "viscous overstability." In this process, the small, random motions of the ring particles feed energy into a wave that propagates outward across the ring from an inner boundary, reflects off the outer edge of the B ring (which becomes distorted as a result), and then travels inward until it reflects off the inner boundary. This continuous back-and-forth reflection is necessary for these wave patterns to grow and become visible as distortions in the outer edge of the B ring.

In supporting these so-called "self-excited" modes, the outer edge of the B ring is behaving the way astronomers believe spiral galaxies behave. However, such modes are not directly observable in galaxies. Cassini's observations of the outer B ring edge constitute the first time such large-scale modes in a broad disk of material have been observed in nature.

The new observations also show two warped regions, including a tall arc of spiky peaks that rise almost two miles above the ring plane. These perturbations may have been sculpted by small moons that migrated across the ring disk, a process believed to be important in shaping planetary systems.

WIRED compilation video

Saturn’s most massive ring, the B ring, has baffled astronomers since the Voyager spacecraft flew by in 1980 and 1981. Those observations showed the B ring was sculpted into a flattened football shape with a sharp outer edge by the moon Mimas. But even in the Voyager images, it was clear the B ring was too complex and chaotic to be shaped by Mimas alone.

Now, in a new analysis published in the Astronomical Journal, thousands of Cassini images gathered over the course of four years have revealed three separate wave patterns that are not driven by any moons, but spring up spontaneously by drawing energy from the small, random motions of ring particles. The waves, which can be hundreds of miles long, keep themselves going by reflecting off the ring’s edges.

“Think of it like waves in a pool,” Porco said. If two kids are hopping up and down at either end of a pool, she says, the waves they send sloshing across the water will pass through each other and reflect off the edge of the pool.

In Saturn’s rings, the waves are more like compressions in a Slinky than water waves, but the physics is similar. “These waves just go back and forth, and keep reflecting until they finally grow large enough so that we can actually see them,” Porco said.

“Normally viscosity, or resistance to flow, damps waves — the way sound waves traveling through the air would die out,” said planetary ring expert Peter Goldreich of Caltech and the Institute for Advanced Study in Princeton, who was not involved in the new study, in a press release. “But the new findings show that, in the densest parts of Saturn’s rings, viscosity actually amplifies waves, explaining mysterious grooves first seen in images taken by the Voyager spacecraft.”

Cassini has also observed similar waves on smaller scales, with wavelengths around 300 feet. Computer models of galaxies and protoplanetary disks around other stars have shown similar randomly generated waves with proportionally larger wavelengths. But because those waves would take hundreds of millions of years to complete one slosh, astronomers can’t observe them directly.

“This is the first time we’ve seen these things in nature,” Porco said. “It underscores the deep, physical connection between what we’re studying at Saturn’s rings, and disk systems across the universe at a very large range of spatial scales.”

Cassini has also snapped pictures of sharp, stalagmite-like peaks at the edge of the B ring that made themselves known by throwing long spiky shadows (below).


Vertical structures, among the tallest seen in Saturn's main rings, rise abruptly from the edge of Saturn's B ring to cast long shadows on the ring in this image taken by NASA's Cassini spacecraft two weeks before the planet's August 2009 equinox.

Part of the Cassini Division, between the B and the A rings, appears at the top of the image, showing ringlets in the inner division.

In this image, Cassini's narrow angle camera captured a 1,200-kilometer-long (750-mile-long) section arcing along the outer edge of the B ring. Here, vertical structures tower as high as 2.5 kilometers (1.6 miles) above the plane of the rings -- a significant deviation from the vertical thickness of the main A, B and C rings, which is generally only about 10 meters (about 30 feet).

Cassini scientists believe that this is one prominent region at the outer edge of the B ring where large bodies, or moonlets, up to a kilometer or more in size, are found. It is possible that these bodies significantly affect the ring material streaming past them and force the particles upward, in a "splashing" manner.

This image and others like it (see PIA11669) are only possible around the time of Saturn's equinox, which occurs every half-Saturn-year, or about every 15 Earth years. The illumination geometry that accompanies equinox lowers the sun's angle to the ring plane and causes structures jutting out of the plane to cast long shadows across the rings. The "season" of equinox allows shadows to appear on the rings in the months before and after equinox, but the actual equinox occurred August 11, 2009, as the sun shone directly edge-on to the ring plane.

This view looks toward the southern, sunlit side of the rings from about 32 degrees below the ring plane.

The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2009. The view was acquired at a distance of approximately 336,000 kilometers (209,000 miles) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 132 degrees. Image scale is 2 kilometers (1 mile) per pixel.

The new study suggests this region of the rings contains small moons that compress the ring material like a soda can and force it upward. This idea is supported by the presence of at least one moonlet, caught during Saturn’s summer equinox when it cast a shadow across the rings.

These moonlets may have migrated across Saturn’s rings, and become trapped in a gravitational resonance with the larger moon Mimas. This process of migration and trapping is exactly how scientists believe the solar system achieved its current architecture.

In this way, Saturn serves as a nearby laboratory to study celestial structures on all scales, from planets to solar systems to galaxies.

“There are basically two shapes in the universe, there’s disks and there’s spheres,” Porco said. “Saturn’s rings allow us to understand one of the two main structures in the universe: a celestial disk system.”

“This is not just a slight addition, it’s something significantly new,” Goldreich told Wired.com. Goldreich and colleagues predicted the presence of these waves in 1985, but the Cassini observations provide the first proof.

“A lot of times, you don’t expect to be around to see whether you made a prediction that worked,” Goldreich said. “I was quite pleased to see it.”
Those 'stagmite' peaks are up to 2.5 km higher than the 10m thick ring plane!

Also posted this week...

Rings around a Crescent

Quote:


A crescent Saturn appears nestled within encircling rings in this Cassini image.

Clouds swirl through the atmosphere of the planet. Prometheus (86 kilometers, 53 miles across) orbits between the main rings and the thin F ring, and this moon appears as a speck above the rings near the middle of the image.

This view looks toward the southern, unilluminated side of the rings from about 3 degrees below the ringplane.

The image was taken with the Cassini spacecraft wide-angle camera on Sept. 14, 2010 using a spectral filter sensitive to wavelengths of near-infrared light centered at 890 nanometers. The view was obtained at a distance of approximately 2.6 million kilometers (1.6 million miles) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 100 degrees. Image scale on Saturn is 151 kilometers (94 miles) per pixel.
Cassini... bringing the awesome, as always.

All those who believe in telekinesis, raise my hand.
  quote